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ABSTRACT

Tracking the evolution of security standards is essential for ensuring regulatory compliance

and maintaining robust cybersecurity practices. This paper presents a scalable, data-driven

methodology for comparing revisions of the NIST Special Publication 800-53 using sentence

embeddings and large language models (LLMs). Using a retrieval-optimised embedding

model, we identify semantically similar controls across revisions and apply an LLM to classify

and explain the relationships between mapped controls. Our evaluation shows that the

LLM accurately identifies both fine-grained and conceptual differences, though it exhibits

occasional omission of details and misinterpretations. We find that the structure and scope

of SP 800-53 controls have grown significantly more modular and comprehensive over time,

with new revisions introducing controls that lack direct counterparts in earlier versions. Our

approach enables interpretable analyses of semantic changes in cybersecurity standards and

provides a foundation for automating the comparison of other regulatory frameworks.

Keywords: Large language models, cybersecurity standards, sentence embeddings, natural

language processing, document comparison
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CHAPTER 1

INTRODUCTION

The growing dependence of modern society on digital systems has dramatically increased the

importance of securing these systems. As government agencies, businesses and individuals

increasingly rely on these technologies, the potential consequences of cybersecurity breaches

have grown substantially, ranging from financial loss to national security threats [1]. In

this environment, security standards play an important role in establishing best practices

for protecting sensitive information, safeguarding critical systems and mitigating risks in

today’s digital landscape.

Security standards serve several essential functions. They establish a baseline of mini-

mum controls that organisations can implement to systematically reduce vulnerabilities. A

control is a measure that modifies or maintains risk [8]. Security standards offer a com-

mon language for articulating security requirements across diverse sectors and stakeholders.

They also provide a framework for assessing compliance, supporting audits, certifications

and regulatory reporting.

Among the most influential cybersecurity standards is the National Institute of Stan-

dards and Technology (NIST) Special Publication 800-53 (SP 800-53). Originally developed

for United States federal agencies in 2002 [28], NIST SP 800-53 has grown in scope and

influence over the past two decades. The publication provides a comprehensive catalogue of

security and privacy controls across a broad array of control families, addressing a variety of

threats to “protect the confidentiality, integrity, and availability of the system and its infor-

mation” [54]. Over successive revisions, the publication has expanded its focus from largely

technical controls to encompass broader organisational governance and privacy protection,

with controls ranging from technical to operational to management domains. Today, NIST

SP 800-53 serves not only as a foundation for federal cybersecurity but also as a widely

referenced security framework for critical infrastructure, and private and non-governmental
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organisations [6, 40].

While the overall structure of SP 800-53 has remained relatively stable across revisions,

the content of the controls has evolved over the years, in tandem with new threats and tech-

nological advances. As a result, individual controls are often added, removed, rephrased,

split into multiple controls or merged. For organisations that seek to maintain compliance

or align their internal security framework with updated standards, understanding how con-

trols change between revisions becomes a challenging but necessary task. Tracking changes

between revisions is, however, not straightforward. Although new revisions generally describe

the overall changes at a high level, there is often no fine-grained, control-level mapping avail-

able. As such, it is difficult to identify how a control may be split up across multiple controls

or combined with other controls into different sections. Moreover, changes are not limited to

the grouping of controls; there may be other semantic shifts in phrasing, scope or technical

requirements without obvious structural indicators.

Traditionally, organisations and auditors have relied on manual comparison of documents

to identify differences in standards and track changes across revisions—a process that is both

time-consuming, inefficient, costly and prone to human error [25, 18, 12, 20, 31, 11]. Some

approaches have employed automation for compliance verification and log analysis [61, 27],

but the emergence of natural language processing (NLP) techniques, particularly sentence

embeddings and large language models (LLMs), offers new possibilities for systematically

comparing standards and their controls.

In this project, we leverage these advances to develop a scalable methodology for com-

paring controls across revisions of NIST SP 800-53. This paper empirically investigates how

LLMs can be used to build an automated system for mapping and identifying changes in

security advice, and how effectively they can classify the nature of these changes with accu-

racy and interpretability. As a case study, we apply this methodology to NIST SP 800-53,

examining how the content of its security controls has evolved across successive revisions.
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Our analysis focuses on identifying and characterising the changes in security advice over

time, examining the extent to which controls are added, removed, modified, restructured or

remain stable across revisions.
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CHAPTER 2

NIST AND NIST SP 800-53

The National Institute of Standards and Technology (NIST), founded as the National Bureau

of Standards (NBS) in 1901, is one of the United States’ first physical science laboratories,

established in response to the growing need for a standardised measurement infrastructure

to maintain industrial competitiveness [9, 10, 2]. Over time, with the growing digitisation of

government and economic infrastructures and the increasing need for cybersecurity, NIST’s

role expanded to include the development of standards, guidelines and best practices to

ensure the trust and security of information systems. Today, NIST is a non-regulatory

agency under the United States Department of Commerce [3].

As a non-regulatory agency, NIST lacks enforcement authority. Nevertheless, its pub-

lications have become de facto standards across both the public and private sectors. This

widespread adoption is due, in part, to their formal integration into federal law and pol-

icy, particularly the Federal Information Security Management Act (FISMA) of 2002 [28]

and the Office of Management and Budget (OMB) Circular A-130 [40]. Under these legisla-

tions, federal agencies are required to develop and implement risk-based information security

programs that ensure the confidentiality, integrity and availability of information [2].

One of NIST’s most influential contributions to federal cybersecurity policy is SP 800-53.

First released in 2005 in response to FISMA’s directive to create standards for securing fed-

eral systems, SP 800-53 provides a comprehensive catalogue of security and privacy controls

designed to protect federal information systems against a wide range of threats. Although

the publication was prepared for use by federal agencies, the influence of SP 800-53 extends

far beyond the federal government and its immediate agencies, as many organisations inter-

act with federal agencies and adopt its controls voluntarily. Its controls offer a baseline for

security and privacy suited toward organisational operations, assets and personnel, recog-

nising that organisational and industry differences make it difficult to have a one-size-fits-all
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standard. More recently, NIST also publishes companion documents to SP 800-53—SP 800-

53A and SP 800-53B—which provide detailed procedures for assessing the effectiveness of

controls and offer predefined security baselines for different system impact levels. Together,

these documents form a cohesive suite that supports the specification of controls, as well

as their implementation, assessment and continuous monitoring. This research will focus

exclusively on NIST SP 800-53.

Table 2.1: Revision history of NIST SP 800-53.

Rev. Title Release

0* Recommended Security Controls for Federal Information Systems Feb 2005
1 Recommended Security Controls for Federal Information Systems Dec 2006
2 Recommended Security Controls for Federal Information Systems Dec 2007
3 Recommended Security Controls for Federal Information Systems and Organizations Aug 2010
4 Security and Privacy Controls for Federal Information Systems and Organizations Apr 2013
5 Security and Privacy Controls for Information Systems and Organizations Sep 2020

* Revision 0 is not labelled as such by the publication, but we will refer to the original release of NIST
Special Publication 800-53 as “Revision 0” throughout this paper.

Since its initial release in February 2005 as Recommended Security Controls for Federal In-

formation Systems, NIST SP 800-53 has undergone several major revisions, reflecting overall

shifts in the technological landscape, emerging threat vectors and ever-evolving expectations

around privacy and risk management. While the overarching structure has remained rela-

tively consistent, the content and organisation of the publication have changed significantly

over time. For one, the evolution of the title of NIST SP 800-53 reflects the broadening

scope of the publication over time. Revisions 0 through 2 were all titled Recommended

Security Controls for Federal Information Systems, emphasising a focus on technical secu-

rity protections applied within federal agencies. With Revision 3, the title was expanded

to Recommended Security Controls for Federal Information Systems and Organizations, sig-

nalling a shift toward broader organisational governance and enterprise risk management.

In Revision 4, the title was updated again to Security and Privacy Controls for Federal

Information Systems and Organizations, formally recognising the increasing integration of

privacy concerns into the existing security frameworks. In the most recent Revision 5, the
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qualifier “Federal” is removed entirely, reflecting NIST’s intent to provide a more universally

applicable framework that can be adopted beyond federal information systems. These title

changes illustrate the standard’s progression from a narrower technical document to a more

comprehensive and adaptable control framework for a diverse array of operational contexts.

Along with the changes in the publication’s title, each revision has also brought signifi-

cant updates to the individual controls and control families. The document-level statistical

changes can be seen in Table 2.2. The original release of the document presented seventeen

control families, and that number has steadily increased over time 1 alongside the number

of controls. This reflects the new technologies, such as cloud and mobile technologies, that

the standard seeks to account for, and the new threat landscapes and regulatory priorities

that emerge. Moreover, control descriptions have become increasingly outcome-oriented and

technology-neutral over time. Rather than prescribing specific mechanisms or tools, later

revisions focus on the desired security and privacy outcomes by parameterising controls and

granting organisations greater flexibility to implement appropriate safeguards suited to their

specific environments. This modular approach allows SP 800-53 to remain relevant across

various governmental and organisational contexts.

Table 2.2: Document-level statistics for each revision.

Metric Rev. 0 Rev. 1 Rev. 2 Rev. 3 Rev. 4 Rev. 5

Page count 85 174 189 238 462 492
Word count 12,362 18,611 18,605 27,670 49,471 62,657
Average control length (words) 590.21 840.73 840.89 1069.62 1441.93 1582.88
Number of control families 17 17 17 18 26 20
Average control count per family 9.59 10.06 10.06 11.0 10.19 14.90

1. This increasing number of control families is not observed in the changes from Revision 4 to Revision
5. This is because Revision 4 introduced several new control families for privacy-related controls, including
Authority and Purpose; Accountability, Audit, and Risk Management; Data Quality and Integrity; and Data
Minimization and Retention. These controls within these privacy-related control families are incorporated
into other control families in Revision 5, hence, the decrease in the number of control families between these
revisions.
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Table 2.3: Count of controls by control family across revisions.

Control Family Rev. 0 Rev. 1 Rev. 2 Rev. 3 Rev. 4 Rev. 5

Access Control (AC) 20 20 20 19 23 23
System and Information Privacy (AP) – – – – 2 –
Authority and Purpose (AR) – – – – 8 –
Awareness and Training (AT) 4 5 5 5 4 5
Audit and Accountability (AU) 11 11 11 14 16 15
Assessment, Authorization, and Monitoring (CA) 7 7 7 6 8 8
Configuration Management (CM) 7 8 8 9 11 14
Contingency Planning (CP) 10 10 10 9 12 12
Inventory and Device Management (DI) – – – – 2 –
Data Management (DM) – – – – 3 –
Identification and Authentication (IA) 7 7 7 8 11 12
Individual Participation (IP) – – – – 4 –
Incident Response (IR) 7 7 7 8 10 9
Maintenance (MA) 6 6 6 6 6 7
Media Protection (MP) 7 6 6 6 8 8
Physical and Environmental Protection (PE) 17 19 19 19 19 22
Planning (PL) 5 6 6 5 6 8
Program Management (PM) – – – 11 16 32
Personnel Security (PS) 8 8 8 8 8 9
Privacy Authorization (PT) – – – – – 8
Risk Assessment (RA) 5 5 5 4 5 9
System and Services Acquisition (SA) 11 11 11 14 20 16
System and Communications Protection (SC) 19 23 23 34 41 47
Security and Privacy Requirements (SE) – – – – 2 –
System and Information Integrity (SI) 12 12 12 13 16 22
Supply Chain Risk Management (SR) – – – – – 12
Transparency (TR) – – – – 2 –
Use Limitation (UL) – – – – 2 –

Total count 163 171 171 198 265 298
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CHAPTER 3

BACKGROUND AND RELATED WORK

This chapter describes the background for our methodology and discusses prior work related

to performing semantic analysis with sentence embeddings, and the utility and limitations

of applying large language models for textual analysis.

3.1 Semantic analysis with sentence embeddings

Semantic analysis aims to understand and compare the meaning of textual data. In recent

years, sentence embedding models such as Sentence-BERT (SBERT) have emerged as a

powerful method for encoding textual content as a fixed-length vector [44, 23]. Sentence

embeddings involve using pre-trained models to map each sentence to a vector space such that

sentences that are semantically similar are close to one another in the vector space. These

vector representations enable comparison of sentence meaning using computational measures

like cosine similarity or vector dot products, which facilitates downstream tasks such as

document clustering, semantic search and question answering [23, 44, 14]. Embeddings

have been widely studied for use in real-world information retrieval applications, including

enterprise semantic search engines [51], duplicate question detection on online forums [55]

and open-domain question answering systems [42]. In regulatory contexts, they have been

used for similarity analysis of legal documents [22, 19], and to measure policy preferences [34].

3.2 Large language models for textual analysis

Large language models (LLMs) have shown immense promise in natural language processing

tasks, particularly in the summarisation of complex texts and documentation [63, 69, 62].

These models, trained on diverse language data, are capable of understanding, analysing

and generating human-like text with a high degree of fluency and contextual awareness. As
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a result, they have become foundational tools in domains that involve processing large vol-

umes of semi-structured language data, including legal analysis and clinical documentation

review [15, 76, 13, 41, 26, 17]. Unlike keyword- or rule-based systems, LLMs can contextually

identify relationships between passages that use different phrasing but express similar ideas.

This makes them especially useful for document comparison tasks, where shifts in sentence

structure may obscure underlying conceptual continuity with traditional approaches.

Recent advances have further improved the utility of LLMs for these purposes. Larger

context windows and instruction-tuned models enable better multi-passage reasoning [75, 59],

allowing models to retain consistency across longer inputs. These capabilities open up new

opportunities for developing automated pipelines that compare and track changes across

long-form documents. Prior work has shown the effectiveness of LLMs in identifying and

categorising disclosures found in privacy policies [52], as well as automating technical privacy

reviews [17]. In this project, we leverage these capabilities to apply LLMs to the domain of

cybersecurity standards, with a focus on identifying semantic change, overlap and divergence

across revisions of NIST SP 800-53.

3.2.1 Context windows

LLMs operate within a context window, which defines the maximum number of tokens—units

that roughly correspond to words or subwords—that the model can process at one time

when generating outputs. The size of the context window directly constrains the amount of

information the model can analyse and reason about at a given time. Earlier models were

constrained by relatively small context windows (GPT-3.5-turbo, for instance, had a context

window of 16,385 tokens), meaning they could only process a document in smaller excerpts

before losing awareness of preceding content. However, the recent GPT-4o and o-series

models from OpenAI have context windows of 128,000 and 200,000 tokens [5], respectively,
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which are large enough to compare the entirety of many security standards1, without the need

for significant chunking. In parallel, substantial research efforts have explored techniques to

extend LLM context windows even further, achieving context window sizes of over a million

tokens [50, 29, 24, 68, 39]. These methods often involve architectural innovations such as

recurrent memory, retrieval-augmented generation or efficient sparse attention mechanisms.

However, while context window expansion addresses technical constraints, prior research

has found that model performance tends to degrade as input length increases [47, 72, 35,

45, 77]. Long documents can overwhelm model attention mechanisms and dilute focus on

relevant portions of the input, leading to inaccuracies in reasoning and generation. As

such, even though models like GPT-4o can technically accommodate the comparison of

large security documents, it remains beneficial to minimise input size wherever possible to

enhance performance. Accordingly, in this work, we focus on optimising input preparation by

isolating relevant control and discussion content, allowing the LLM to reason more effectively

and precisely over the inputs.

3.2.2 Hallucinations and abstentions

Importantly, LLMs are not infallible. A well-documented challenge in their deployment is

the phenomenon of hallucination, where the model outputs unsubstantiated claims or out-

right false or logically inconsistent responses that may sound fluent or plausible [30, 36].

Hallucinations are understood to have a number of different causes, including misinforma-

tion and biases, knowledge boundaries, overconfidence and reasoning failures [37]. Because

LLMs generate responses based on statistical patterns, some degree of hallucination is widely

regarded as inevitable [70, 16], even if the model has correct knowledge [57]. Abstention, or

1. For reference, NIST SP 800-53 Revision 5 is about 90,000 tokens in length, and Revision 0 is ap-
proximately 18,000 tokens in length. This count includes only the control information and the discussion
that immediately follows each control; it does not account for control enhancements or additional context
that precedes the controls appendix. Including these enhancements and additional background and context
increases the Revision 5 token count to about 325,000, which is well above the context window of models
such as GPT-4o.
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the ability of a model to refrain from generating a response when uncertain, is an important

technique to mitigate these issues [67, 60]. While models tend to have trouble abstaining

from binary answers [65], they are also highly sensitive to prompt wording [66, 48]. Tech-

niques that explicitly instruct the model to evaluate its own confidence or uncertainty before

responding have shown promise in encouraging more reliable abstentions [73, 71]. In using

LLMs to compare security advice, we will also attempt to better understand the challenges

and limitations of their use for such tasks, as well as techniques that improve their ability

to abstain appropriately when faced with uncertainty.
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CHAPTER 4

METHODOLOGY

We adopt a multi-step methodology to analyse semantic changes across revisions of NIST

SP 800-53, combining structured document parsing, embedding-based control mapping and

LLM-based comparison and summarisation. This chapter describes the methodology used

to build this automated system, how we used this system to identify changes in SP 800-53

and how the correctness and interpretability of this system was evaluated. In particular, we

compare Revision 5 against Revision 4, Revision 3, Revision 2 and Revision 01. A visual

overview of our methodology is shown in Figure 4.1.

4.1 Document parsing and control extraction

Historical and current NIST revisions are available on the official NIST government website,

in the Computer Security Resource Center. We sourced all six revisions of NIST Special

Publication 800-53 from this repository. The documents were provided in Portable Document

Format, so we began by parsing each revision into a consistent JSON format suitable for

downstream semantic comparison.

Controls in NIST SP 800-53 are structured hierarchically: each top-level control (e.g.,

AC-2) may be followed by one or more enhancements (e.g., AC-2(1), AC-2(2)), which provide

optional or situational refinements to the main control. While these control enhancements

have improved substantially and expanded in scope and technical precision from the first

revision to the current revision, they are inconsistent across all revisions. Though the content

of the control may be similar between revisions, the absence of control enhancements in earlier

revisions can introduce structural asymmetry and confound attempts to track continuity in

the fundamental intent and coverage of the standards over time. As such, for purposes of

1. Revisions 1 and 2 are nearly identical in content and structure, aside from a few minor changes in
punctuation and grammar, so we exclude Revision 1 from further comparison to reduce redundancy.
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Standard A Standard B

Document parsing and control extraction

Standard A

Control 1
Control 2

...
Control n

Standard B

Control 1
Control 2

...
Control m

Computing embeddings: BAAI/bge-base-en

n x m matrix of
pairwise similarity
scores

...

...

...

...

...

...

...

...

...

...

...

...

Thresholding and change point detection

...

Control 2

Control i
Control j
Control k
Control l

Control n
Control a
Control b
Control c

Control 3 Control m

Control 1 Control i

...

Standard A Standard B

LLM comparison: LLaMA 3.3 70B Instruct

LLM-based summarisation

Comparison results

Control 1 { Control i }
   – <label>: <explanation>

Control 2 { Control i, j, k, l }
  – <label>: <explanation>

... ...

Control-level
mappings

LLM output

Figure 4.1: Overview of the thesis methodology.
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our embeddings- and LLM-based analyses, we excluded all control enhancements, focusing

exclusively on top-level controls. Excluding these control enhancements helps reduce variance

in control granularity and ensures more equitable comparisons across standards.

In addition to the control text for each top-level control, we included the accompanying

Discussion (Revision 5) or Supplemental Guidance (Revisions 0-4), when provided for each

control. This section generally elaborates on the intent, context and implementation con-

siderations of the control, which offers information beyond the terse language of the control

itself. Since these explanatory sections are consistently present across revisions and largely

consistent in length, their inclusion supports a more robust and context-aware comparison

of controls over time. Including this supplementary content ensures that embeddings and

LLM-based comparisons are informed by the full extent of each control, without too much ad-

ditional variability in structure and specificity that further including control enhancements

may introduce. This filtered, top-level-only control set and the accompanying discussion

form the input for subsequent embedding and comparison stages.

4.2 Control-level mapping using embeddings

Embedding-based methods have been widely adopted in tasks like document retrieval, se-

mantic search and paraphrase mining, and recent work has demonstrated their applicability

in the alignment of legal and compliance texts [56, 49, 46]. Since the mapping between con-

trols in one revision to the control in another revision is not one-to-one, we use embeddings

to approximate the set of controls in one revision that are most semantically similar to each

control in another. This enables a direct comparison between related, semantically similar

controls across two different revisions.
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4.2.1 Embedding model selection

We used the BAAI/bge-base-en model, available on Hugging Face [4], to transform each

control and discussion text into a high-dimensional vector representation. This is the base

general embeddings model; it is retrieval-optimised, meaning that output embeddings are

close to one another in embedding space if the inputs are semantically similar. The model

was accessed through the Sentence Transformer framework, which supports both encoding

and retrieval workflows. The input to the model was formatted using a task-specific pre-

fix ("Represent this sentence for retrieval:") to guide the model toward generating

context-aware embeddings.

We also experimented with other sentence embedding models, but many other models

produced results that failed to provide sufficient separation between semantically similar and

dissimilar controls. In many cases, unrelated controls received moderately high similarity

scores, resulting in ambiguous rankings that made reliable mapping difficult. In contrast,

bge-base-en produced embeddings with sharper clustering behaviour and greater score

differentials between relevant and irrelevant matches.

4.2.2 Finding similar controls

After using the embedding model to vectorise each control in both revisions, we use cosine

similarity to compute a pairwise similarity metric between each control in Revision A and all

the controls in Revision B. Because sentence embeddings map semantically similar sentences

to vectors that are close to one another in the resulting vector space, computing the cosine

similarity is appropriate for identifying the relatedness of two sentences. This involves taking

the dot product between each pair of embeddings and unit-normalising the result. The

output of this operation across all the controls in both standards is an n × m similarity

matrix, where n and m represent the number of controls in Revision A and Revision B,

respectively. If entry i, j has a numeric value close to unity, this indicates that control i in
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Revision A is semantically similar to control j in Revision B; an analogous statement can

be made for numeric values close to zero and semantic dissimilarity. This similarity matrix

forms the basis of our control mapping strategy, capturing the semantic alignment between

controls in different revisions.

4.2.3 Generating mappings

With this similarity matrix, we determine the mapping from each control in Revision A to

the controls in Revision B. Rather than selecting a single matching control in Revision B

for each Revision A control (for instance, by taking the corresponding control in Revision B

with the maximum cosine similarity), we applied a hybrid approach to determine meaningful

segments of high-similarity candidates. This approach enables one-to-many mappings, which

account for controls that may be split into multiple granular controls between revisions, or

for the consolidation of several overlapping controls into a single control. Because these

mappings ultimately determine which controls get compared in the LLM-based comparison,

restricting the mapping to a single match risks discarding relevant content and providing

incomplete information in the downstream analyses.

Each control’s similarity vector was sorted in descending order, and the difference between

adjacent values was analysed. We used both fixed threshold gaps and change point detection

to detect shifts in similarity scores and segment controls accordingly. We used a fixed

threshold of 0.02; if a drop of at least 0.02 was detected between adjacent similarity scores,

the position of the drop was treated as a natural cutoff. For cases without clear drop-

offs that satisfied this threshold, usually in cases where there was no direct match in the

other revision, we used the ruptures library for change point detection. We used the PELT

algorithm with an L2 cost model to identify change points in the similarity score distribution

for each control. After both the fixed threshold gaps were analysed and change points were

identified when necessary, we retained the first segment as the mapping for each control. This
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is the segment containing the controls in the mapped-to revision with the highest similarity

score, and hence, is the closest semantic match to the mapped-from control.

We performed this control-level mapping in both directions, mapping each Standard A

control to one or more controls in Standard B, and vice versa. This bidirectional mapping

helps capture the asymmetric relationship between controls, where a control in one revi-

sion may have no equivalent counterpart in the other, or where a control’s meaning was

redistributed across multiple controls.

4.3 LLM-based comparison

Once each control in one revision is mapped to a corresponding set of candidate controls

in another revision using the embedding-based approach, the next step is to determine the

specific semantic relationship between each control and its corresponding mapped controls

from the other revision. We used large language models for this task, prompting them to

generate labels and explanations for the relationship between the controls.

4.3.1 Model choice and parameters

We used Meta’s LLaMA 3.3 70B Instruct model, accessed through the Together.ai API. This

model was selected for its cost efficiency and performance. We invoked the model through a

call to client.chat.completions.create. To ensure more consistent outputs and reduce

variability in responses, we used a temperature of 0.0 to limit sampling randomness.

4.3.2 Prompt structure

We designed a prompt template that contextualises the task as a comparative analysis be-

tween two pieces of cybersecurity advice. The prompt presents the text of one control from

Revision A alongside the corresponding mapped controls from Revision B obtained through
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the embeddings-based mapping described above. The model is then asked to label the re-

lationship of the advice from Revision A to the corresponding advice from Revision B into

one of five categories: agrees, superset, subset, disagrees or incomparable. The criteria for

each label are detailed within the prompt:

• AGREES: Excerpt A and Excerpt B offer compatible or equivalent guidance.

• SUPERSET: Excerpt A is broader or more comprehensive than Excerpt B, but some

of the advice in Excerpt A is in Excerpt B. Excerpt B does not provide additional

guidance beyond that in Excerpt A. That is, there are more control details in Excerpt

A than in Excerpt B.

• SUBSET: Excerpt B is broader or more comprehensive than Excerpt A, but some of the

advice in Excerpt B is in Excerpt A. Excerpt A does not provide additional guidance

beyond that in Excerpt B. That is, there are more control details in Excerpt B than

in Excerpt A.

• DISAGREES: Excerpt A contradicts or opposes Excerpt B in intent or recommendation.

• INCOMPARABLE: The two address unrelated domains, abstraction levels, or objectives,

or if the model is uncertain or lacks confidence in its ability to determine a clear

relationship.

To guide the model towards structured reasoning beyond a mere categorical judgement,

we prompt the model to justify the label based on scope, overlap, technical differences or lack

of comparable content. For relations other than AGREES, we also ask the model to specify all

the differences between the two excerpts. For ease of interpretation and to reduce the risk

of hallucination, we include explicit instructions to return only a valid Python dictionary

containing the relation and explanation. The system message designates the LLM as a

“security standards analyst” to provide context for the model’s task; this has been found to

help better align the model’s response with the intention of the task [43, 38]. Furthermore,

the prompt encourages abstention through the INCOMPARABLE label if the model is not at
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least 95% confident in its decision. This is used to mitigate overconfident or incorrect labels,

especially in cases where the true relationship between the controls may be ambiguous. The

prompt template used for LLM-based comparisons can be found in Appendix A.1.

4.3.3 Comparing iteratively

We reconstruct the prompt for each control in Revision A, comparing it to the corresponding

mapped controls in Revision B. The comparison for each control is conducted via a separate

call to chat.completions.create, which ensures that this comparison is performed inde-

pendently of the context and influence of prior comparisons. All the results are saved to a

JSON file, with the individual dictionary-like output produced by the LLM converted to a

Python dictionary object using ast.literal eval. We repeat this iterative comparison for

each control in Revision B, mapped to Revision A controls. We will use “forward mapping”

to refer to comparisons from an older revision to a newer revision, and “backward map-

ping” to refer to comparisons from a newer revision to an older revision. This bidirectional

comparison generates a complementary set of labels and explanations that allows for more

robust examinations of the changes between revisions.

4.4 LLM-based summarisation

After performing the bidirectional comparison between revisions, we again use an LLM to

generate a high-level summary of the semantic relationships observed across revisions. This

summarisation step is designed to distill hundreds of granular control comparisons into a

more concise, human-readable analysis that characterises the similarities and differences at

a high level. This process allows an end user to better understand broader patterns and

conceptual changes between the two standards.

We perform this LLM-based summarisation using the same Meta LLaMA 3.3 70B Instruct

model used previously. As before, we use a temperature of zero to improve consistency in
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the response. To construct the prompt, we aggregate the previously outputted comparison

results, grouping each control and its corresponding explanations by its relationship label

(AGREES, SUBSET, SUPERSET, DISAGREES or INCOMPARABLE). During this aggregation, we

reclassify SUBSET-labelled controls, if they have a one-to-many mapping in the embeddings

step. This reflects the idea that a single control may have been partitioned into more granular

units in the other revision, rather than simply being less comprehensive. This distinction

can help the model better identify restructuring between revisions, as controls are added,

moved around and split up.

These label-grouped explanations—from both directions of the bidirectional compar-

isons—are then provided to the LLM, which is asked to identify similarities, differences,

contradictions and broader thematic shifts in the control guidance. Specifically, we ask the

model to address six questions:

1. What are the similarities between these two standards?

2. What are the differences between these two standards?

3. Are there any inconsistencies between these two standards? That is, would following

the guidelines in one standard conflict with guidelines in the other standard?

4. What broad categories of guidance are generally missing from the {std1 name} stan-

dard? What types of guidance are generally missing from the {std2 name} standard?

Please broadly characterize these missing controls. If I am a member of the security

team at an organization, what differences should I be aware of?

5. Highlight what this might reveal about how the controls have evolved between {std1 name}

and {std2 name}.

6. Summarize any notable patterns in the explanations.

We instruct the LLM to synthesise this information into a 3-5 paragraph summary, explicitly

asking it to refrain from using any prior knowledge in order to reduce the likelihood of

hallucinations. The output serves as a useful high-level summary of the broader conceptual
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and structural shifts between revisions. The full prompt used for LLM-based summarisation

can be found in Appendix A.2.

4.5 Evaluation

To evaluate the quality of the LLM-generated relationship classifications and explanations,

we perform deductive coding using a predefined coding scheme consisting of six categories:

Correct; Correct, but incorrect labelling; Omission; Addition; Incorrect; and Irrelevant.

These categories are outlined in Table 5.2. This evaluation focuses on both the correctness

of the LLM’s relationship label and the semantic fidelity of its justification. In particular, we

assess whether the model accurately identifies the nature of the relationship between controls

and whether the accompanying explanation captures all relevant elements of the control’s

meaning without omitting important details or introducing fabricated content.

4.5.1 Revision 5 and Revision 4 comparison

For the comparison between NIST SP 800-53 Revision 4 and Revision 5, we leveraged the

official change documentation released as a supplemental document by NIST alongside Re-

vision 5 [32]. In particular, the Mapping of Appendix J Privacy Controls (Rev. 4) to Rev. 5a

spreadsheet provides a definitive set of control-level correspondences and annotated change

details, which allows for a direct verification of the LLM’s outputs for all the controls. This

document serves as a ground truth against which we could validate the correctness of the

LLM-generated mappings. Each LLM-generated relationship label and its associated expla-

nation was reviewed against this ground truth and coded accordingly, with special attention

paid to whether the model captured all relevant content, omitted key information or intro-

duced hallucinated details. The results are presented in Table 5.3.
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4.5.2 Other revision comparisons

For comparisons involving earlier revisions of SP 800-53, no official control-level mapping

or detailed change log is available to define control-level mappings or describe the evolution

of controls in a structured format. In the absence of such reference material, we employed

a sampling-based evaluation strategy. A stratified random sample of controls was drawn

across the LLM-produced labels, and the corresponding LLM outputs for those controls were

manually reviewed. Coding, using the same six categories as previously described, is based

on a close reading of the control texts and a judgement of the reasonableness of the LLM’s

inferred relationships. The results of these evaluations are also presented in Table 5.3.
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CHAPTER 5

RESULTS AND DISCUSSION

This chapter presents the results of our analysis and discusses key changes identified by

applying our methodology to compare revisions of NIST SP 800-53. We begin by examining

the structure and distribution of embeddings-based control mappings. We then evaluate

the correctness of LLM-generated relationship labels and interpretability of LLM-generated

explanations, and reflect on the broader implications of these findings for the viability of

automated LLM-based approaches to regulatory comparison tasks.

5.1 Analysis of embeddings-based mappings

This section analyses the efficacy of the embeddings-based control mappings. Table 5.1

displays summary statistics from these mappings in both backward (mapping from Revision

5 to earlier revisions) and forward (mapping from earlier revisions to Revision 5) directions.

Table 5.1: Summary of control mapping metrics across revision comparisons.

Backward mappings (from Rev. 5) Forward mappings (to Rev. 5)

Metric* Rev. 4 Rev. 3 Rev. 2 Rev. 0 Avg Rev. 4 Rev. 3 Rev. 2 Rev. 0 Avg

Counts
Mappings made 298 298 298 298 298.00 265 198 171 163 199.25
1-to-1 mappings 254 201 170 159 196.00 239 188 156 148 182.75
1-to-1 matches** 232 182 148 142 176.00 231 182 152 141 176.50
1-to-many mappings 44 97 128 139 102.00 26 10 15 15 16.50

Summary statistics of controls per mapping
Average count 2.55 3.77 10.03 6.67 5.76 4.16 1.29 1.44 1.50 2.10
Maximum count 25 25 170 162 95.50 296 15 15 15 85.25
Avg mean similarity 0.955 0.925 0.899 0.893 0.918 0.965 0.959 0.942 0.937 0.951
Avg max similarity 0.958 0.930 0.907 0.900 0.924 0.967 0.960 0.943 0.939 0.952

* For a control X in the source revision, its “mapped controls” refers the set of controls in the target
revision that are most semantically similar to X (as measured by the cosine similarity between the
embeddings). Then, the average number of mapped controls is the average of this number across all
the controls in the source revision.

** The number of 1-to-1 matches refers to the number of 1-to-1 mappings, where the control identifier of
the source revision matches the control identifier of the target revision. In order for a control in the
source revision to have a 1-to-1 match, its control family and identifier must exist in the target revision.
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5.1.1 Backward mappings tend to be more diffuse

The mapping, summarised in Table 5.1, reveals that controls introduced in Revision 5 tend

to have more diffuse mappings when aligned to earlier revisions. That is, a single control

from Revision 5 maps to several distinct controls in a previous revision, as opposed to having

a one-to-one counterpart, indicating a diffusion of its content across multiple older controls.

This is evident in the significantly higher average number of mapped controls per source

control when mapping from Revision 5 to Revision 4 (2.55), when compared to mapping

from Revision 5 to Revision 2 (10.03). These statistics suggest that, on average, the guidance

provided in a single control in Revision 5 is covered by fewer than three controls from Revision

4, and just over ten controls from Revision 2. This suggests that newly introduced controls

may include additional details that span multiple older controls, so it is more difficult to

establish a clean one-to-one correspondence using the embeddings-based mapping.

This observation is especially prevalent when mapping Revision 5 controls to an older

revision that does not contain any explicit equivalent to the control’s guidance. In such cases,

the control may align only partially with a broad collection of thematically adjacent controls,

the combination of which still does not capture the full intent of the newer control. In

particular, modern controls related to privacy, supply chain risk management or continuous

monitoring may only find approximate coverage scattered across disparate technical controls

in older revisions. For instance, control PM-30, titled Supply Chain Risk Management

Strategy, is a new base control introduced in Revision 5. It is mapped to PM-9 in both

the Revision 3 and Revision 4 mappings, which discusses broader risk management strategy

but does not explicitly mention supply chains. However, in revisions prior to Revision 3,

PM-9 does not exist, and the entire Program Management control family is absent. As a

result, PM-30’s guidance in Revision 5 lacks a direct or even approximate counterpart in

these earlier revisions. It is mapped to a set of 15 thematically similar controls in Revision

2 and a different set of 15 controls in Revision 0. In these cases, the mapping serves more
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as a note of thematic adjacency than as a reliable basis for backward equivalence.

On the other hand, controls that are consistently present across all revisions tend to

exhibit much more stable and concentrated mappings. These controls often maintain similar

functional intent over time despite changes in the level of detail provided by the guidance. As

such, they are more likely to preserve semantic continuity across revisions, enabling clearer

alignment between controls in different revisions when computing embedding similarities.

This stability allows for more accurate mappings using the embedding-based approach. For

example, SI-4, titled System Monitoring in Revision 5, appears in every revision of SP 800-

53. The language and specificity of the control has evolved extensively from the original

revision to Revision 5. In Revision 0, the control read:

SI-4 (Intrusion Detection Tools and Techniques): The organization employs tools and
techniques to monitor events on the information system, detect attacks, and provide
identification of unauthorized use of the system.

In Revision 5, the control is expanded to:

SI-4 (System Monitoring): a. Monitor the system to detect: 1. Attacks and in-
dicators of potential attacks in accordance with the following monitoring objectives:
[Assignment: organization-defined monitoring objectives]; and 2. Unauthorized lo-
cal, network, and remote connections; b. Identify unauthorized use of the system
through the following techniques and methods: [Assignment: organization-defined
techniques and methods]; c. Invoke internal monitoring capabilities or deploy mon-
itoring devices: 1. Strategically within the system to collect organization-determined
essential information; and 2. At ad hoc locations within the system to track specific
types of transactions of interest to the organization; d. Analyze detected events and
anomalies; e. Adjust the level of system monitoring activity when there is a change
in risk to organizational operations and assets, individuals, other organizations, or
the Nation; f. Obtain legal opinion regarding system monitoring activities; and g.
Provide [Assignment: organization-defined system monitoring information] to [Assign-
ment: organization-defined personnel or roles] [Selection (one or more): as needed;
[Assignment: organization-defined frequency]].

Despite the substantial changes in the presentation of the control and the amount of detail

in the guidance, and even a change in the control title, our embeddings model consistently

maps SI-4 in Revision 5 to SI-4 in all the revisions with a relatively high similarity score.
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This suggests that our approach is capable of capturing conceptual continuity even when

the control verbiage and length are vastly different. Embedding-based methods can robustly

align semantically stable controls across revisions, but produce more diffuse mappings for

controls that undergo significant changes in granularity and scope between revisions.

5.1.2 Mapping is largely asymmetric

Another observation from the embeddings-based mapping process is that mapping between

revisions is asymmetric, reflecting the increasing scope and coverage of controls over time.

That is, mapping from Revision 5 to earlier revisions produces different patterns than map-

ping from earlier revisions to Revision 5. Revision 5 introduces many controls that are

broader in scope and incorporate security considerations across domains that were either ab-

sent or only implicitly addressed in earlier revisions. As a result, when a Revision 5 control

is mapped to an older revision, its content is often dispersed across a wide set of themati-

cally similar controls. On the contrary, Revision 5 still covers most of the controls in prior

versions, usually extending the original control text with greater detail and supplemental

guidance. As a result, the reverse mappings from earlier revisions to Revision 5 are more

concentrated. Controls from earlier revisions often align with a single control in Revision

5, leading to a higher proportion of one-to-one mappings and a reduced average number of

mapped controls.

This observation is especially prevalent for newly introduced controls. Take, for example,

PT-1 in Revision 5, the Policy and Procedures control for the Privacy Authorisation control

family. Prior to Revision 5, the Privacy Authorisation family did not exist altogether, so

when mapping from Revision 5 to earlier revisions, PT-1 tends to get mapped to several

generic policy and procedure-related controls from other control families, such as Personnel

Security Policy and Procedures (PS-1) and Physical and Environmental Protection Policy

and Procedures (PE-1). However, in the mappings from earlier revisions to Revision 5, no
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control is mapped to PT-1 at all. This absence illustrates a conceptual gap between the

revisions; earlier revisions may contain language that touches on privacy policies, but they

lack the granularity of the new control. When a new control encapsulates concerns that were

previously unaddressed or only implicitly distributed across the standard, forward mappings

may result in a one-to-many relationship, while reverse mappings yield no relationship with

the new control at all.

This trend can also be observed through the higher average number of mapped controls

in the forward mapping in relation to the counterpart backward mapping to the same pre-

vious revision, with the exception of the mapping to Revision 4. The maximum number of

mapped controls reveals a similar trend, with forward mappings generally mapping at most

15 other controls (again, with the exception of Revision 4) whereas backward mappings map

to upwards of 25. This further indicates that backwards mappings from Revision 5 often

span multiple tangentially-related controls in earlier revisions, while forward mappings from

older revisions tend to concentrate on a few highly similar Revision 5 controls. The exception

of Revision 4 is likely the result of the structural differences introduced in Revision 4 that

were revoked in Revision 5.

However, the asymmetry is also present in the opposite direction, where a single Revision

5 control maps cleanly to an older control, but that same older control maps to multiple

controls in Revision 5. For example, AU-2, titled Event Logging in Revision 5, is a focused

and modular control that covers logging:

AU-2 (Event Logging): a. Identify the types of events that the system is capable of
logging in support of the audit function: [Assignment: organization-defined event types
that the system is capable of logging]; b. Coordinate the event logging function with
other organizational entities requiring audit-related information to guide and inform
the selection criteria for events to be logged; c. Specify the following event types for
logging within the system: [Assignment: organization-defined event types along with
the frequency of (or situation requiring) logging for each identified event type]; d. Pro-
vide a rationale for why the event types selected for logging are deemed to be adequate
to support after-the-fact investigations of incidents; and e. Review and update the
event types selected for logging [Assignment: organization-defined frequency].
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When mapping from Revision 5 to earlier revisions, AU-2 maps exclusively to AU-2, formerly

titled Audit Events / Auditable Events, in Revisions 0 through 4:

AU-2 (Auditable Events): The information system generates audit records for the
following events: [Assignment: organization-defined auditable events].

AU-2 is much more detailed and comprehensive in Revision 5 about logging, whereas AU-2

in the previous revisions is very broad and rather vague. As such, in the forward mapping,

this broader AU-2 control is aligned with multiple more granular audit-related controls in

Revision 5, including AU-12 (Audit Record Generation), AU-2 (Event Logging) and AU-

3 (Content of Audit Records). This one-to-many mapping in the forward direction arises

because Revision 5 decomposes the functionality of the older AU-2 into several distinct

components, each with more specific guidance and assignments. In the backward direction,

however, the newer AU-2 control only maps to the broader AU-2 control in older revisions

since that is the only remotely relevant control in the earlier revision. This illustrates a

different asymmetry from what is observed with newly introduced controls such as PT-1.

Overall, this asymmetry of control mappings reflects overarching shifts in conceptual

framing and scope between revisions; newer controls tend to be more granular or modular,

whereas older controls are broader in scope. This effectively creates two causes of asymmetry,

one from the expansion of scope and the other from increased modularity.

5.2 Evaluation of LLM comparisons

As introduced in Section 4.5, we use deductive coding to evaluate the quality of the LLM’s

label and response. Based on the ground truth and close readings of the control texts, we

manually coded the LLM-generated classification and explanation into one of six categories:

Correct; Correct, but incorrect labelling; Omission; Addition; Incorrect; and Irrelevant. The

individual criterion for each coding category is further described in Table 5.2, and the coding

results are presented in Table 5.3. This section discusses the model’s performance using these
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categories and examines the strengths and weaknesses in how the model interprets changes

across different revisions.

Table 5.2: Deductive coding categories used to evaluate LLM-generated comparisons.

Code Description

Correct The LLM output matches ground truth with no substantive errors.

Correct, but incorrect
labelling

The explanation correctly identifies the nature of the change, but
the LLM assigns the wrong relationship label.*

Omission The LLM omits important details or aspects of the change that
appear in the ground truth.

Addition The LLM hallucinates or introduces information not present in
the ground truth.

Incorrect The LLM explanation misrepresents the meaning or direction of
change, including logical contradictions.

Irrelevant The response is off-topic or too vague to meaningfully engage with
the control content.

* For example, the LLM may identify that Excerpt A contains more specific guidance than that
presented in Excerpt B, but incorrectly label Excerpt A as a SUBSET of Excerpt B (when it should
be a SUPERSET under our definition).

Table 5.3: Coding counts for LLM comparison of Revision 5 against previous revisions.

Code Rev. 4 Rev. 3 Rev. 2 Rev. 0

Correct 250 14 9 11
Correct, but incorrect labelling 20 1 8 4
Addition 0 0 0 0
Omission 20 3 2 3
Incorrect 8 2 1 2
Irrelevant 0 0 0 0

Total coded 298 20 20 20

5.2.1 The LLM correctly identifies most changes, even subtle changes

Our iterative comparison approach revealed that the LLM, on the whole, was able to detect

both major semantic and fundamental changes, as well as the introduction of minor details

29



between revisions. Across all revisions, a majority of the controls are classified correctly,

as seen in the coding results provided in Table 5.3. In most cases, the LLM correctly flags

when one revision omits a detail that is explicitly present in another revision. This suggests

a degree of contextual awareness in how the LLM parses meaning across comparable texts;

rather than merely checking for lexical overlap, the LLM consistently demonstrates an ability

to assess the functional overlap and gaps between two pieces of advice. Further, of the LLM

comparisons that were manually verified, none of the comparisons blatantly contradicts the

ground truth, with most of the incorrect coding labels stemming from an overly literal

interpretation of the text rather than a substantive misunderstanding of the underlying

control meaning.

Impressively, the LLM captures and explains even minor detail changes in the control

text, such as the AC-8 control on System Use Notification. AC-8 from Revision 0 reads:

The information system notifies the user, upon successful logon, of the date and time of
the last logon, and the number of unsuccessful logon attempts since the last successful
logon.

while AC-8 from Revision 5 reads:

Notify the user, upon successful logon to the system, of the date and time of the last
logon.

The LLM correctly identifies the additional guidance in Revision 0, noting that “Rev. 0

excerpt provides more detailed guidance by including the number of unsuccessful logon at-

tempts since the last successful logon” and subsequently classifies the guidance in Revision

5 as a subset of the guidance in Revision 0. This illustrates the model’s ability to catch

changes in security details, even when the overall structure and tone of the guidance remain

consistent. In addition, the LLM, for the most part, does not overreact to surface-level dif-

ferences in phrasing. Instead, it is capable of identifying when two versions of a control offer

substantively equivalent guidance, even if one offers additional context, as is the case with
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AC-21 in the comparison between Revisions 4 and 5. The control texts are essentially the

same across the two revisions, but the supplemental guidance for AC-21 in Revision 4 reads:

[...] Information may be defined by content, type, security category, or special access
program/compartment.

For Revision 5, the discussion for AC-21 expands to:

[...] Information may be defined by content, type, security category, or special access
program or compartment. Access restrictions may include non-disclosure agreements
(NDA). Information flow techniques and security attributes may be used to provide
automated assistance to users making sharing and collaboration decisions.

In this example, the LLM correctly identifies their similarity and agreement, even pointing

out the subtle difference in the additional examples provided in the Revision 5 discussion:

The main differences are minor and include additional related controls listed in Rev.
5 and a slightly expanded discussion of examples of restricted information, but these
do not change the overall intent or recommendation of the control.

This illustrates the model’s ability to differentiate between the overarching foundations of a

control and the examples that accompany it. The efficacy with which the model identifies

changes between revisions raises the possibility that it may have been potentially trained

on, or influenced by, the publicly available change documentation provided by NIST. While

testing the model for memorisation may be worthwhile, this explanation is still insufficient

to account for the full range of behaviours observed. In particular, in some cases, the

model correctly provides additional details about a change between revisions beyond what is

described by the change documentation. For example, in the comparison of AC-7 in Revision

5 to AC-7 in Revision 4, the change details include:

Parameter includes additional selection options when the number of allowed consecutive
invalid logon attempts threshold is exceeded. Discussion amplifies the control text with
examples of addition actions to help prevent brute force attacks

However, the LLM identifies additional differences between the controls beyond these:
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The Rev. 5 excerpt provides more comprehensive guidance than the Rev. 4 excerpt,
including additional actions such as prompting the user to answer a secret question,
invoking a lockdown mode, allowing users to only logon from specified IP addresses,
requiring a CAPTCHA, or applying user profiles. The Rev. 5 excerpt also mentions
considering a combination of other actions to help prevent brute force attacks and
prompting users to respond to a secret question before the number of allowed unsuc-
cessful logon attempts is exceeded, which are not present in the Rev. 4 excerpt.

Finally, in cases where the source control is truly incomparable with the set of controls

it is mapped to, typically for newly introduced controls in Revision 5, the model accurately

labels the pairing as INCOMPARABLE. These instances demonstrate that the model is capable

of recognising when no meaningful conceptual overlap exists, rather than forcing a match

based on linguistic or structural similarities. These results show promise for the use of large

language models in the comparison of security advice.

5.2.2 The LLM is more sensitive to smaller changes and more susceptible

to omission for substantial changes

For smaller, localised changes, the LLM performs comparison remarkably well. These smaller

changes typically involve the addition or removal of a clause or a slight shift in phrasing.

The LLM generally detects these edits with precision, correctly classifying the control as a

subset or superset of the other, and providing explanations that accurately reflect the specific

semantic shift. For example, when comparing PL-4 between Revisions 4 and 5, the LLM

identifies “minor differences in wording, such as ‘documented acknowledgment’ in Rev. 5

versus ‘signed acknowledgment’ in Rev. 4, and the inclusion of ‘electronic agreement check

boxes or radio buttons’ in Rev. 5.” This fine-grained awareness suggests that the current

model is capable of identifying incremental updates that may otherwise go unnoticed in

broader comparisons.

In contrast, for more substantial changes, such as major reorganisations or the introduc-

tion of entirely new implementation concepts, the LLM is more likely to omit some change
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details when making the comparison. Rather than indicating a lack of understanding of the

control, this pattern likely stems from the nature of the prompt structure and the constraints

of the model’s focus. When faced with broader conceptual shifts, the LLM may struggle to

compress all relevant information into a concise explanation, leading it to foreground high-

level themes while omitting more granular content. In these cases, its responses generally

capture the general direction of the revision, but fail to fully enumerate the specific change

details. This is particularly the case for the Policy and Procedures controls; for each control

family, Revision 5 introduces several new policies and procedures that are not presented in

the Revision 4 document. For instance, the change details documentation for IR-1 identifies

several change details:

Title changed from ‘Incident Response Policy and Procedures’. Requires the selec-
tion (one or more) of organization-level; mission/business process-level; system-level
incident response policies. Adds text requiring consistency with applicable laws, ex-
ecutive orders, directives, regulations, policies, standards, and guidelines. Requires
the designation of a specific official to manage the development, documentation, and
dissemination of the incident response policy and procedures. New parameters re-
quire update to policy and procedures as a result of specified events in addition to
specified frequency. Discussion amplifies the need for policy and procedures for risk
management, and to help provide security and privacy assurance.

These details of these changes are non-exhaustively captured in the LLM’s response:

The Rev. 5 excerpt provides more detailed and comprehensive guidance on incident re-
sponse policy and procedures, including the requirement for consistency with applicable
laws and regulations, and the consideration of events that may precipitate updates to
the policy and procedures, whereas the Rev. 4 excerpt provides more general guidance
on the development, documentation, and dissemination of incident response policy and
procedures.

While the model captures the high-level changes, it fails to enumerate all the details of the

changes. This contrast highlights both the strengths and limitations of LLM-based compari-

son: the model excels at detecting fine-grained, syntactic edits but is less precise when trying

to communicate more substantial changes. This also exemplifies the value of performing

control-level mappings and comparisons as opposed to broader document-level comparisons;
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by isolating individual controls, we can more effectively identify localised semantic shifts and

scope changes that may be otherwise obscured in document-level analyses.

5.2.3 The LLM can sometimes interpret the text too literally

In a similar vein to the sensitivity to smaller changes, the LLM interprets control text too

literally on several occasions, particularly when revisions introduce supplementary context

or illustrative examples. While the model demonstrates overall comprehension, it sometimes

misinterprets clarifying language in newer revisions as substantively narrowing the scope

of a control, even when the intended function remains equivalent. The following example

illustrates this tendency for the PE-15 (Water Damage Protection) control from Revision 5

when compared against PE-15 from Revision 0. The Revision 0 control reads:

PE-15 (Water Damage Protection): The organization protects the information system
from water damage resulting from broken plumbing lines or other sources of water
leakage by ensuring that master shutoff valves are accessible, working properly, and
known to key personnel.

Meanwhile, the Revision 5 control reads:

PE-15 (Water Damage Protection): Protect the system from damage resulting from
water leakage by providing master shutoff or isolation valves that are accessible, work-
ing properly, and known to key personnel. Discussion: The provision of water dam-
age protection primarily applies to organizational facilities that contain concentrations
of system resources, including data centers, server rooms, and mainframe computer
rooms. Isolation valves can be employed in addition to or in lieu of master shutoff
valves to shut off water supplies in specific areas of concern without affecting entire
organizations.

In this scenario, it is evident that the guidance provided for this control in Revision 0 is

effectively covered entirely by the guidance provided in Revision 5; the set of guidance in

Revision 5 should be a superset of the advice in Revision 0. However, the LLM labels the

guidance in Revision 5 as a subset of the guidance in Revision 0, with the explanation that:
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The Rev. 0 excerpt is broader in the sense that it mentions protection from water dam-
age resulting from broken plumbing lines or other sources of water leakage, while the
Rev. 5 excerpt primarily applies to organizational facilities containing concentrations
of system resources.

This response reflects an overly literal reading of the text in Revision 5. While the discus-

sion does list organisational facilities such as data centres and server rooms, the purpose of

including these facilities does not functionally narrow the control’s application. The mis-

understanding likely stems from the LLM interpreting the discussion as a limiting clause

rather than an explanatory one, potentially overly fixating on specific phrases that appear

to narrow the scope. As a result, the model incorrectly infers that the newer control is less

comprehensive, when in reality it is more flexible and technically detailed. This behaviour

appears especially prevalent in cases where revisions introduce additional explanatory guid-

ance, including examples and common implementations. Rather than recognising these as

non-exclusive elaborations, the model may misinterpret these as constraints, thus misclassi-

fying the relationship of the controls.

Interestingly, this appears to contradict the pattern observed in cases like AC-21 discussed

above, where the model correctly identified that additional examples did not alter the overall

intent or recommendation of the control. This may be a result of how the terminology and

phrasing of the control influences how the model interprets functional scope. The PE-15

excerpt uses the phrase “primarily applies to,” which may be interpreted as limiting the

applicability of the control, in contrast to the more permissive “may be used to” phrasing

used in the AC-21 discussion. In these cases, the model may mistake clarifying language

for a narrowing of scope. Since a majority of the LLM responses coded as “Incorrect” in

Table 5.3 stems from this type of misinterpretation, future work could experiment with more

structured prompts that more explicitly instruct the LLM to focus on the functional intent

rather than other contextual elements.
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5.3 The evolution of NIST SP 800-53

This section examines the major changes that the model captures in the evolution of the

NIST SP 800-53 standard. Table 5.4 summarises the distribution of relationship labels for

both backward and forward mappings. The prevalence and variation of these labels across

pairs of revision comparisons provide insight into how the structure and semantics of the

controls have shifted over time. The changes leading up to Revision 5 can broadly be

categorised into two overarching trends: an expansion in conceptual scope and an increase

in modularity and implementation detail.

Table 5.4: LLM labels for control mappings.

Backward mappings (from Rev. 5) Forward mappings (to Rev. 5)

Metric* Rev. 4 Rev. 3 Rev. 2 Rev. 0 Rev. 4 Rev. 3 Rev. 2 Rev. 0

AGREES 125 24 7 8 129 17 5 2
SUBSET 84 127 181 162 110 168 164 157
SUPERSET 84 121 83 96 26 13 2 4
DISAGREES 0 0 0 0 0 0 0 0
INCOMPARABLE 5 26 27 32 0 0 0 0

Total 298 298 298 298 265 198 171 163

5.3.1 An expansion in conceptual scope

Over successive revisions, NIST SP 800-53 has expanded its conceptual boundaries to in-

corporate broader organisational, privacy and risk management concerns that were largely

absent in earlier versions. Controls introduced in Revision 5 largely address new domains,

such as supply chain risk management and privacy governance, which were not formally rep-

resented in previous versions. As shown in Table 5.4, this conceptual broadening is reflected

in the relative scarcity of AGREES labels as we compare Revision 5 with earlier versions. For

instance, while 125 controls are labelled as AGREES in the backward comparison from Re-

vision 5 to Revision 4, only seven and eight controls are considered functionally equivalent

in comparison with Revision 2 and Revision 0, respectively. This sharp decline suggests
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that Revision 5 substantially reframes and reorganises many existing controls to cover a

broader security landscape. The large proportion of SUBSET labels in the backward map-

ping to older revisions further supports this observation, indicating that backward mappings

from Revision 5 are subject to many one-to-many mappings characteristic of newly intro-

duced controls, while the sizeable amount of SUPERSET labels also indicates that Revision

5 controls frequently subsume and extend the content of older controls. Furthermore, we

observe more INCOMPARABLE labels in comparisons of Revision 5 against older versions; since

INCOMPARABLE labels suggest that the content of the mapped controls addresses unrelated

topics or domains, this is also an indication of the broader scope of Revision 5 and the in-

creasing broadening of scope over time. The LLM-based summarisation results, presented

in Appendix B, also capture these changes.

These observations align closely with two of the seven “most significant changes” to

Revision 5, identified in the NIST Cybersecurity blog [53]:

• Integrating supply chain risk management: Revision 5 establishes a new Sup-
ply Chain Risk Management (SCRM) control family and integrates supply chain risk
management aspects throughout the other control families to help protect system com-
ponents, products, and services that are part of critical systems and infrastructures.
The SCRM controls help ensure that security and privacy requirements, threats, and
other concerns are addressed throughout the system development life cycle and the
national and international supply chains.

• Adding new state-of-the-practice controls: As cyber threats evolve rapidly,
new safeguards and countermeasures are needed to protect the critical and high value
assets of organizations including individual’s privacy and personally identifiable infor-
mation. The new controls in Revision 5 are based on the latest threat intelligence and
cyber-attack data (e.g., controls to support cyber resiliency, secure systems design,
security and privacy governance, and accountability).

5.3.2 An increase in modularity

Alongside the conceptual expansion, NIST SP 800-53 has evolved towards a more modular

and granular structure, with newer revisions featuring more specific and outcome-based

guidance. This trend is particularly evident in the forward mappings from older revisions
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to Revision 5. As shown in Table 5.4, the SUBSET label dominates forward mappings from

revisions prior to Revision 3, meaning that older controls are often subsets of their Revision

5 counterparts—that is, they tend to be less detailed or comprehensive in comparison. The

prevalence of older controls being subsets of Revision 5 controls suggests two things:

1. Earlier controls persist in Revision 5, but now appear more narrowly scoped within a

richer ecosystem of related guidance.

2. Revision 5 introduces finer distinctions between conceptual domains, often containing

additional guidance for what may have previously collapsed into a single requirement.

Rather than prescribing monolithic controls, Revision 5 decomposes guidance into more

well-defined, self-contained guidance with parameters tuneable for individual organisational

needs. This makes it easier for implementers to apply controls selectively and systematically.

These changes align closely with two other of the seven changes identified in the NIST

Cybersecurity blog [53]:

• Making controls outcome-based: Revision 5 accomplishes this by removing the
entity responsible for satisfying the control (i.e., information system, organization)
from the control statement—thus focusing on the protection outcome to be achieved
by the application of the control. Note that for historical continuity, Appendix C,
Control Summaries now includes an “implemented by [system/organization]” column.

• Improving descriptions of content relationships: Revision 5 clarifies the rela-
tionship between requirements and controls as well as the relationship between secu-
rity and privacy controls. These relationships are important to understand whether
you are selecting and implementing controls at the enterprise level or as part of a life
cycle-based systems engineering process.

Revision 5 also contains more comprehensive discussion and control enhancements compared

to earlier revisions. Though our comparisons do not investigate changes to the control en-

hancements, these additions further provide elaboration on control intent and offer practical

implementation considerations. Importantly, the increase in modularity across successive

revisions does not introduce contradictory information or disagreements, so newer revisions

tend to extend reorganise existing guidance rather than fundamentally altering its meaning.
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5.3.3 Summary of changes

Together, the label distributions across forward and backward mappings reinforce the notion

that NIST SP 800-53 has matured from a set of general-purpose controls into a complex,

modular framework designed to address the evolving threat landscape. This transformation

reflects the increased technical sophistication of the compliance landscape.

Notably, three of the seven “most significant changes” to Revision 5 outlined in the NIST

Cybersecurity blog are not captured by the LLM comparison. These changes include [53]:

• Consolidating the control catalog: Information security and privacy controls are
now integrated into a seamless, consolidated control catalog for systems and organi-
zations. The privacy controls in Appendix J of Revision 4 have been incorporated
into a new privacy family and the existing Program Management family. [...]

• Separating the control selection process from the controls: [...]

• Transferring control baselines and tailoring guidance to a separate publi-
cation: Control baselines have been moved to the new NIST SP 800-53B, Control
Baselines for Information Systems and Organizations. [...]

Since the LLM-based comparisons occur at the control level, they inherently lack visibility

into changes made to the higher-level structure of the standard. As a result, these higher-

order modifications—such as consolidation, process decoupling and baseline removal—remain

outside the scope of what this method can capture. While LLMs are effective at tracking

semantic drift and refinement within individual controls, this approach makes them less sen-

sitive to overarching structural changes across standards. We discuss additional limitations

of our approach in Section 5.4 below.

5.4 Limitations

While our methodology demonstrates the utility of sentence embeddings and large language

models for comparing cybersecurity standards, several limitations should be acknowledged.

First, the accuracy of our approach depends heavily on the quality of the initial control

mappings. Although the embedding-based strategy enables flexible one-to-many mappings,
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it may introduce noise, particularly when controls are diffuse or when a control has no true

semantic counterpart in the other revision. In such cases, even a highly capable LLM may

struggle to draw meaningful comparisons, resulting in incorrect or overly generic relationship

labels. We observe this in our comparison results when a control that is mapped to a set of

many other controls is labelled as a subset of that set; while true, this label is not particularly

helpful for determining how the control aligns conceptually with the other revisions.

The accuracy of the comparisons is also limited by the accuracy of the model. We have

seen that the LLM occasionally exhibits sensitivity to surface-level textual differences, some-

times misinterpreting elaborative examples or clarifying language as changes in scope or

intent. This tendency toward literalism can lead to inaccurate comparisons, particularly in

cases involving substantial explanatory additions in newer revisions. Similarly, the model

occasionally omits relevant change details when faced with larger conceptual shifts, indi-

cating limitations in reasoning. LLMs are also prone to hallucination, which introduces an

additional aspect of unreliability. This poses a risk in high-stakes contexts such as standards

compliance, where correctness is critical.

The evaluation of model outputs remains partially subjective, particularly for compar-

isons where no official ground truth exists. While deductive coding provides a structured

approach to model evaluation, the classification of correctness, omissions, hallucinations

or mislabelling is still subjective and potentially inconsistent. These limitations suggest

important avenues for refinement, including improved alignment techniques and enhanced

prompting strategies.
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CHAPTER 6

CONCLUSION

This research presents and validates a methodology that combines sentence embeddings and

large language models to compare and contrast revisions of NIST SP 800-53. Our results

demonstrate that LLMs are capable of accurately classifying and explaining relationships

between controls. The methodology reveals two primary trends in the evolution of NIST SP

800-53: a shift toward modularity and increased specificity in newer revisions, and the cov-

erage of new domains such as privacy and supply chain risk management that lack historical

equivalents. Despite some limitations, particularly in handling complex reorganisations or

LLM errors, our approach achieves a high degree of semantic fidelity. More broadly, this

research underscores the utility of LLMs in structured document comparison tasks and opens

the door to generalising this framework for cross-standard comparison. As regulatory land-

scapes become more complex and interdependent, scalable tools for interpreting and aligning

security standards will play an important role in security, compliance and risk management.

6.1 Future work

This work provides a foundation for using LLMs and sentence embeddings to assess semantic

changes in cybersecurity standards over time. A number of avenues for future research

and methodological refinement remain. While our analysis focuses on comparing across the

revision history of NIST SP 800-53, our general methodology can be extended to comparisons

between entirely different cybersecurity standards (e.g., FedRAMP, ISO/IEC 27001, SOC

2). Different standards have vastly different control families and document structures, but

since we do not assume anything about the cross-revision similarities of NIST SP 800-53,

the embeddings-based mapping and the LLM-based comparison and summarisation can

still be applicable to cross-standard comparisons. However, as observed in our embeddings
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for NIST controls, we have seen that controls that do not cleanly map to a single control

in the other revision tend to have very diffuse mappings, making it difficult to ascertain

specific relationships outside of being a subset of a large group of controls. This can dilute

the semantic clarity needed to effectively compare controls across standards. One possible

solution we’ve explored to address this challenge is by introducing an additional layer of

abstraction. This involves mapping all the controls in both standards to an external security

framework, such as the domains identified by the Secure Control Framework [7], to pre-cluster

controls. Then, LLM-based comparisons can be applied within and across these clusters.

This approach can support more scalable analyses of the interoperability of distinct sets of

standards, which can be valuable for identifying gaps and contradictions that adhering to

one standard over another can result in.

Prompting also remains a central challenge in LLM-based analysis. Future work could

explore alternative prompt formulations, including chain-of-thought prompting [64], few-

shot learning [21] or iterative prompting [74] strategies, to improve the reliability and in-

terpretability of model outputs. Further, while our current methodology distinguishes the

mapping and comparison steps, further work can experiment with the direct use of LLMs to

generate mappings, either as a first step or as a refinement mechanism for diffuse mappings

following the initial embedding-based matches.

This research used the bge-base-en model for the embeddings-based mappings. It would

be beneficial to experiment with different sentence encoders to perform this mapping, as al-

ternative models, especially those tuned on technical or legal documents, may offer improved

domain-specific performance. We have also experimented with using LLMs to reconcile

mismapped controls as an intermediate validation step before comparison to ensure accurate

mappings and sensical comparisons. Additionally, the use of LLM-based embeddings [33, 58]

may also allow us to integrate the mapping and comparison steps into a single workflow.

A broader goal of this project is the development of an end-to-end pipeline for standards
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comparison by using semantic similarity, LLM-based reasoning and structured summarisa-

tion. By automating the identification of control additions, removals, restructurings and

thematic shifts, such a system could help security professionals more efficiently assess the

evolution of regulatory guidance and how those changes may influence organisational secu-

rity implementations. This comparative analysis can enable the identification of areas where

one framework’s unique controls can complement another, offering a more comprehensive

perspective for organisations looking to adopt or refine their security strategies.
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APPENDIX A

PROMPT TEMPLATES

This appendix presents the prompt templates used for the LLM-based analysis, particularly

for control comparison and summarisation.

A.1 LLM comparison prompt template

We used the following prompt template for comparing a single pair of controls:

LLM comparison prompt template

System message: You are a security standards analyst.

Prompt: Given one piece of cybersecurity advice (Excerpt A), analyze how Excerpt A
relates to Excerpt B. Determine the relationship using one of the following labels:

• AGREES: Excerpt A and Excerpt B offer compatible or equivalent guidance.
• SUBSET: Excerpt A is a narrower or more specific instance of Excerpt B.
• SUPERSET: Excerpt A is broader or more comprehensive than Excerpt B.
• DISAGREES: Excerpt A contradicts or opposes Excerpt B.
• INCOMPARABLE: The excerpts are unrelated, or the relationship is unclear.

Use your knowledge of cybersecurity frameworks (e.g., NIST SP 800-53, ISO/IEC 27001,
CIS Controls, FedRAMP) to assess technical scope, control intent, and implementation.

Excerpt from Rev. {stdA name} (Excerpt A):
{stdA excerpt}

Excerpt from Rev. {stdB name} (Excerpt B):
{stdB excerpt}

Return a dictionary with:
• relation: one of AGREES, SUBSET, SUPERSET, DISAGREES, INCOMPARABLE
• explanation: a brief justification based on scope, overlap, or differences

If you are not at least 95% confident due to ambiguity or insufficient detail, return
‘relation’: ‘INCOMPARABLE’ and explain why.

This prompt was dynamically generated for each control in Revision A and its mapped

candidates from Revision B.
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A.2 LLM summarisation prompt template

We used the following prompt template to instruct the LLM to synthesise the results of

pairwise control comparisons into a high-level summary:

LLM summarisation prompt template

System message: You are a security standards analyst.

Prompt: The comparison data below maps each control from {std1 name} to its semanti-
cally similar counterparts in {std2 name}. For each pair, the model outputs a relation label
(AGREES, SUBSET, SUPERSET, DISAGREES, or INCOMPARABLE) and a natural language explanation
of why the label was assigned. I am interested in how {std1 name} compares to {std2 name}
at a high level based on these labels and explanations.

The following controls in {std1 name} AGREE WITH their corresponding control(s) in
{std2 name}: {std1 agrees}

The following controls in {std1 name} ARE MORE COMPREHENSIVE THAN their corre-
sponding control(s) in {std2 name}: {std1 superset}

The following controls in {std1 name} ARE LESS COMPREHENSIVE THAN their corre-
sponding control(s) in {std2 name}: {std1 subset}

The following controls in {std1 name} DISAGREE WITH their corresponding control(s) in
{std2 name}: {std1 disagree}

The following controls in {std1 name} ARE INCOMPARABLE WITH their corresponding
control(s) in {std2 name}: {std1 incomparable}

The following controls in {std1 name} HAVE BEEN SPLIT UP INTO MULTIPLE CON-
TROLS in {std2 name}: {std1 split}

The comparison data below maps each control from {std2 name} to its semantically similar
counterparts in {std1 name}. As above, [...]

Using only the above comparison data, without reference to your previous knowledge, please
answer the following questions:

1. What are the similarities between these two standards?
2. What are the differences between these two standards?
3. Are there any inconsistencies between these two standards? That is, would following the

guidelines in one standard conflict with those in the other?
4. What broad categories of guidance are generally missing from {std1 name}? What types

are missing from {std2 name}? If I am on a security team, what differences should I be
aware of?

5. Highlight what this might reveal about how the controls have evolved between
{std1 name} and {std2 name}.

6. Summarize any notable patterns in the explanations.

Respond with a concise 3-5 paragraph summary.
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APPENDIX B

LLM-GENERATED SUMMARIES

This appendix presents the LLM-generated summaries that result from the methodology described

in Chapter 4.4. There is a large degree of overlap between the summaries for each of the compar-

isons. The contents of the following subsections are entirely generated by LLMs, with additional

emphasis added to highlight key findings and takeaways.

B.1 Revision 4, compared to Revision 5

The comparison data between Revision 5 and Revision 4 standards reveals several similarities and

differences. Similarities include the agreement between corresponding controls in both standards,

such as access control, audit and accountability, and incident response. Many controls in Re-

vision 5 have equivalent guidance in Revision 4, indicating consistency in the fundamental

security and privacy principles. Differences, on the other hand, are evident in the level of detail,

scope, and specific requirements. For instance, Revision 5 provides more comprehensive

guidance on security and privacy controls, including additional related controls and consider-

ations for supply chain risk management, privacy impact assessments, and continuous monitoring.

The differences between the two standards are notable, with Revision 5 generally providing more

detailed and expansive guidance on various security and privacy controls. Revision 5 includes

additional requirements, such as the consideration of privacy risks, supply chain risk

management, and continuous monitoring, which are not explicitly mentioned in Revision

4. In contrast, Revision 4 provides more general guidance on certain topics, such as security

awareness training and incident response. There are no apparent inconsistencies between the

two standards, as the guidance in one standard does not conflict with the guidance in the other.

However, the broader scope and more detailed requirements in Revision 5 may require

organizations to reassess and update their security and privacy controls to ensure compliance.

The broad categories of guidance generally missing from the Reivsion 5 standard include specific

details on certain topics, such as security awareness training and incident response, which
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are more comprehensively covered in Revision 4. In contrast, Revision 4 is missing guidance

on supply chain risk management, privacy impact assessments, and continuous monitoring, which

are more extensively covered in Revision 5. As a member of the security team, it is essential to be

aware of these differences and to ensure that the organization’s security and privacy controls align

with the more comprehensive and detailed requirements in Revision 5. The evolution of controls

between Revision 5 and Revision 4 reveals a shift towards more comprehensive and detailed guidance

on security and privacy controls, with a greater emphasis on supply chain risk management, privacy

impact assessments, and continuous monitoring.

The notable patterns in the explanations include the consistent agreement between correspond-

ing controls in both standards, indicating a strong foundation in fundamental security and privacy

principles. The more detailed and expansive guidance in Revision 5 suggests a growing recognition

of the importance of supply chain risk management, privacy impact assessments, and continuous

monitoring in ensuring the security and privacy of organizational systems and data. The explana-

tions also highlight the importance of ongoing review and update of security and privacy controls to

ensure compliance with evolving standards and requirements. Overall, the comparison data reveals

a maturation of security and privacy controls, with Revision 5 providing more comprehensive and

detailed guidance to support organizational security and privacy posture.

B.2 Revision 3, compared to Revision 5

The comparison data between Revision 5 and Revision 3 standards reveals several similarities and

differences. Similarities include the shared control intent and implementation guidance for various

security controls, such as access control, incident response, and risk management. Both standards

emphasize the importance of developing and implementing security policies, procedures, and con-

trols to protect organizational information systems. The differences between the two standards lie

in the level of detail, scope, and specificity of the guidance provided. The Revision 5 stan-

dard tends to be more comprehensive, providing additional details, examples, and related controls,

whereas the Revision 3 standard is more general and focused on specific aspects of security.

The Revision 5 standard includes more detailed guidance on topics such as security and
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privacy risk management, supply chain risk management, and incident response. In

contrast, the Revision 3 standard provides more general guidance on security planning,

security assessments, and security authorization. There are no apparent inconsistencies

between the two standards, and following the guidelines in one standard does not conflict with

guidelines in the other. However, the Revision 5 standard tends to be more prescriptive, providing

specific requirements and examples, whereas the Revision 3 standard is more flexible and allows

for organization-defined controls and procedures.

The broad categories of guidance generally missing from the Revision 5 standard include more

general and high-level guidance on security planning and security assessments. In contrast, the

Revision 3 standard lacks detailed guidance on specific security controls, such as security and pri-

vacy risk management, supply chain risk management, and incident response. As a member of the

security team, it is essential to be aware of these differences and to understand that the Revision 5

standard provides more comprehensive and detailed guidance on specific security controls, whereas

the Revision 3 standard provides more general guidance on security planning and assessments. The

evolution of controls between Revision 5 and Revision 3 reveals a shift towards more comprehen-

sive and detailed guidance on specific security controls, reflecting the increasing complexity and

sophistication of cyber threats.

The comparison data also reveals notable patterns in the explanations. Many of the Revision 5

controls are more comprehensive and detailed, providing additional examples, related controls, and

specific requirements. In contrast, the Revision 3 controls tend to be more general and focused on

specific aspects of security. This pattern suggests that the Revision 5 standard is more focused on

providing detailed guidance on specific security controls, whereas the Revision 3 standard is more

focused on providing general guidance on security planning and assessments. Overall, the compari-

son data highlights the importance of understanding the differences between the two standards and

the need for organizations to adapt their security controls and procedures to the evolving cyber

threat landscape.

The differences between the two standards may also reflect changes in the regulatory and

threat landscape. The Revision 5 standard may be more comprehensive and detailed due to the
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increasing sophistication of cyber threats and the need for more specific guidance on

security controls. In contrast, the Revision 3 standard may be more general due to its focus on

providing high-level guidance on security planning and assessments. As the cyber threat landscape

continues to evolve, it is likely that security standards will continue to adapt and provide more

comprehensive and detailed guidance on specific security controls.

B.3 Revision 2, compared to Revision 5

The comparison data between Revision 2 and Revision 5 standards reveals several similarities

and differences. Similarities include the emphasis on access control, audit and accountability,

configuration management, and incident response. Both standards provide guidance on these topics,

indicating a consistent approach to information security and privacy. However, the differences lie

in the level of detail, specificity, and scope of the guidance. The Revision 5 standard provides

more comprehensive and detailed guidance on various security controls, including

security and privacy planning, risk management, and supply chain risk management.

The differences between the two standards are notable, with Revision 5 providing more

detailed and specific guidance on various security controls. For example, Revision 5 in-

cludes more detailed requirements for access control, audit and accountability, and configuration

management. In contrast, Revision 2 provides more general guidance on these topics. Addition-

ally, Revision 5 includes new controls and guidance on topics such as privacy, supply chain risk

management, and cybersecurity. The Revision 2 standard, on the other hand, focuses on

more traditional security controls, such as access control and incident response. There

are no apparent inconsistencies between the two standards, and following the guidelines in one

standard does not conflict with guidelines in the other.

The broad categories of guidance generally missing from the Revision 5 standard include more

detailed technical specifications for certain security controls, such as cryptography and network

security. In contrast, the Revision 2 standard lacks guidance on newer security topics, such as

privacy, supply chain risk management, and cybersecurity. The missing controls in Revision

5 can be characterized as technical implementation details, while the missing controls
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in Revision 2 can be characterized as emerging security topics. As a member of the

security team, it is essential to be aware of these differences and to understand the evolving nature

of security controls and guidance.

The evolution of controls between Revision 5 and Revision 2 reveals a shift towards more

comprehensive and detailed guidance on security and privacy topics. The Revision 5 standard

includes more emphasis on privacy, supply chain risk management, and cybersecurity,

indicating a recognition of the increasing importance of these topics in modern information security.

The notable patterns in the explanations include the consistent emphasis on access control, audit

and accountability, and configuration management, as well as the increasing focus on emerging

security topics. Additionally, the explanations highlight the importance of continuous monitoring,

risk management, and incident response in both standards.

Overall, the comparison data highlights the evolving nature of security controls and guidance.

The Revision 5 standard provides more comprehensive and detailed guidance on various security

controls, while the Revision 2 standard focuses on more traditional security controls. Understanding

these differences is essential for security teams to ensure they are implementing effective security

controls and staying up-to-date with emerging security topics. The patterns in the explanations

reveal a consistent emphasis on fundamental security topics, as well as a growing recognition of the

importance of emerging security topics, such as privacy and supply chain risk management.

B.4 Revision 0, compared to Revision 5

The comparison data between Revision 5 and Revision 0 standards reveals several similarities and

differences. Similarities include the shared goals and objectives of various controls, such as access

control, incident response, and risk assessment. Both standards provide guidance on these topics,

indicating a common foundation for security and privacy practices. However, the differences lie in

the level of detail, specificity, and comprehensiveness of the guidance. The Revision 5 standard

tends to provide more detailed and specific requirements, whereas the Revision 0 standard offers

more general guidance.

The differences between the two standards are notable, with Revision 5 providing more
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comprehensive guidance on various controls, such as configuration management, con-

tinuous monitoring, and supply chain risk management. In contrast, the Revision 0

standard lacks the same level of detail and specificity, but provides more general guid-

ance on certain topics. There are no apparent inconsistencies between the two standards, as

the guidelines in one standard do not conflict with those in the other. However, the differences in

guidance may require security teams to adapt their practices to align with the more comprehensive

and detailed requirements of the r5 standard.

The broad categories of guidance generally missing from the Revision 5 standard include spe-

cific details on certain topics, such as the use of FIPS 140-2 compliant cryptography

and the implementation of specific security controls. In contrast, the Revision 0 standard

lacks guidance on topics like configuration management, continuous monitoring, and supply chain

risk management. The missing controls in Revision 5 tend to be more technical and spe-

cific, whereas those in Revision 0 are more general and high-level. Security teams should

be aware of these differences and adapt their practices accordingly. The evolution of controls be-

tween Revision 5 and Revision 0 suggests a shift towards more comprehensive and detailed

guidance, with a greater emphasis on risk management, continuous monitoring, and supply chain

risk management.

The comparison data reveals notable patterns in the explanations, with the Revision 5 standard

consistently providing more detailed and specific requirements. This suggests that the Revision 5

standard is more comprehensive and up-to-date, reflecting the evolving security and privacy land-

scape. The explanations also highlight the importance of risk management, continuous monitoring,

and supply chain risk management in the Revision 5 standard, indicating a greater emphasis on

these topics. Overall, the comparison data provides valuable insights into the similarities and differ-

ences between the Revision 5 and Revision 0 standards, and highlights the importance of adapting

security practices to align with the more comprehensive and detailed requirements of the Revision

5 standard.

The differences between the two standards may indicate a maturation of security and

privacy practices, with the Revision 5 standard reflecting a more nuanced and comprehensive
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approach to security and privacy. The increased emphasis on risk management, continuous moni-

toring, and supply chain risk management in the Revision 5 standard suggests a recognition of the

evolving security threats and the need for more proactive and adaptive security practices. Security

teams should be aware of these differences and adapt their practices to align with the more com-

prehensive and detailed requirements of the Revision 5 standard, ensuring that their organizations

remain secure and resilient in the face of emerging threats.
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